
TrustArc
Integrations
Workbook

How to Use
This Workbook
This workbook helps you think through how to architect
and design a TrustArc Integration Recipe:

What outcome you’re trying to achieve

How the data should flow between systems

When that flow should be triggered

What steps are needed (and which are wasteful)

What might break, and how you’d catch it

What the long-term cost and upkeep might look like

HOW TO USE IT:

Print it out or fill it in digitally

Use one full pass per Recipe or use case

3

Map the Job
You’re Solving
Let’s start by getting clear on your use case. What systems
you want to integrate, what outcomes you want to happen,
and why.

What’s the Job to Be Done?
Fill this in clearly. Be specific.

When [trigger event happens],

I want [specific action/outcome to occur],

So that [privacy/compliance/business goal is achieved].

EXAMPLE:

When a new vendor record is created in ServiceNow,

I want that vendor and its core details automatically synced
to TrustArc,

So that our privacy inventory always reflects the latest third-
party relationships without using spreadsheets or sending
emails manually.

Tip: This exact Recipe comes prebuilt in TrustArc. You can

use it out of the box and adapt it to fit your own systems

or business processes. Just swap ServiceNow for another

vendor source, or tailor the fields you want to sync.

4

What Systems Are Involved?
List every system that touches this flow.

What Kind of Data Is Moving?
This helps you understand what data properties to use.

SYSTEM
NAME

ROLE IN THE RECIPE
(Trigger or Action)

SPECIFY WHAT HAPPENS
IN THE SYSTEM

DATA TYPE
(e.g., record,
status, tag, ID) FROM SYSTEM TO SYSTEM NOTES

5

When Should This Run?
Choose the best match:

 Every time a record changes (event-triggered)

 At scheduled intervals (polling/scheduled)

 Only when a human takes action (manual trigger)

 Other:

If you’re unsure how polling vs event triggers affect task
usage, revisit the Privacy Automation Cookbook.

What Should Not Happen?
This helps prevent scope creep and wasted tasks.

Example: “Don’t process records with status = draft”

Example: “Exclude any entry not linked to a
consent profile”

Write your own guardrails:

Where do guardrails belong? Set your “don’t process” rules

as early as you can — ideally in the trigger or first filter step.

This keeps unwanted records out from the start. If you need

more specific checks, add IF or skip logic later in the flow.

Good Recipes filter before they act.

http://trustarc.com/resource/privacy-automation-cookbook

6

Design the
Recipe Flow
“Structure reveals logic.”

This section helps you outline your Recipe — step by step —
before you build it.

Think of this like building a skeleton. Each action is a joint.
Each condition is a hinge. Each trigger is the first push that
sets a series of actions.

Your Recipe Skeleton
Start with this structure. Fill it in clearly. See the following
page for more information.

STEP #
WHAT SHOULD
HAPPEN HERE?

WHAT SYSTEM DOES
THIS HAPPEN IN?

WHEN SHOULD
THIS STEP RUN?
(List any conditions or filters)

1 (Trigger)

2 (Action)

3 (Action)

4 (Action)

5

6

7

8 (Optional)

7

Add Repetition (Loops or Batches)
Will any step need to run for multiple records at once?

 No, every record is handled one at a time

 Yes, and I want to process them one by one (loop)

 Yes, and I want to process them all at once (bulk)

Describe the repeated step:

About the “When should this step
run?” column:

Not every step will apply to every record.
Sometimes a step only makes sense when
the record meets your rules. This is where
you write those rules down.

 For example:

Only continue if vendor status
is “approved”

If the data subject request type is
“erasure,” notify IT; if the type is
“access,” notify compliance

Use this column to spell out any “if” or
“when” conditions. These keep your Recipe
focused and prevent unwanted steps. If you
find yourself writing a long or complicated
answer, it might be a sign you need to split
this step or let a different system handle
part of the logic.

Tip: If you find yourself writing long or

messy answers:

 You may need to split the steps.

 Or rethink what system should
handle it.

Tip: Loops cost more tasks but allow precision. Bulk saves on

tasks but has less flexibility.

8

Optional: Add a Stop Condition
Sometimes, a Recipe should not continue if certain conditions
are met.

Example: If a record has no email, stop here.

Example: If status = “archived,” skip

Write your stop rule here:

Quick Logic Check
Before you move on:

Does each step do only one thing?

Are you avoiding steps that try to cover two
unrelated outcomes?

Do you know when the Recipe runs and why?

Are you sure you’re not processing every record
by default?

9

Plan for Errors
& Edge Cases
“What will break? And what should happen when it does?”

You’ve scoped your logic. You’ve estimated your task usage.
But no automation runs perfectly forever. This section helps
you design for when things don’t go to plan — without adding
unnecessary complexity.

We’re not talking about advanced error handling or retry logic
here. Those tools exist inside the Recipe builder and platform.
This section is about thinking like a resilient builder.

Before you start building, answer:

Where can this Recipe fail?

What should happen when it does?

Who needs to know, and when?

This keeps your flows clean, recoverable, and easier
to monitor.

Design Your Alert Logic
You don’t need to be paged for everything. But you do
need visibility.

WHEN DO YOU WANT TO BE NOTIFIED?

 On any failure

 Only on repeated failures

 Only when a critical system is involved

 When task usage spikes suddenly

 When the Recipe fails silently

10

HOW DO YOU WANT TO BE NOTIFIED?

 Email

 Slack

 Log entry (e.g., Airtable or Sheet)

 Just mark in the dashboard for later review

 Other:

Write your logic below:

“If Step fails, send Slack message to
privacy-ops channel”

 “If Recipe fails more than 3 times in 1 hour,
alert a team member”

 “If task usage jumps more than 200% in a day,
log alert to admin sheet”

11

Monitor & Maintain Over Time
What to Monitor

FROM THE INTEGRATIONS
DASHBOARD, TRACK:

Total tasks used per Recipe
(monthly trend)

Number of jobs triggered
(volume baseline)

Failed jobs (and whether they repeat)

Recipe version changes (who edited
what, and when)

Version History as Your
Audit Trail
Every time you save a Recipe, a version
is created.

In the Version tab, you can:

Compare two versions to see
what changed

Spot task increases from edits

Leave comments explaining why
the change was made

BEFORE YOU DEPLOY AN UPDATE,
WRITE DOWN:

“What exactly did I change?”

 “What’s the risk of this version?”

 “How would I know if this
broke something?”

ADD A COMMENT LIKE:

“Switched from loop to bulk insert
to reduce task cost. Should save
~90% per run.”

That single line could save hours
of debugging later.

Tip: Commenting within the Builder

You can add comments almost

anywhere in the Recipe builder. If you

want to explain a single step, use a

comment right there, it helps anyone

reading understand your logic or

choice. For big-picture notes, like why

you changed a Recipe or what should

be watched after an update, comment

at the Recipe level. Good comments

make life easier for your team and

for your future self, whether you’re

reviewing one action or the whole flow.

12

How Monitoring Works at Scale
Whether you’re running one Recipe or fifty, TrustArc
monitors task usage and behavior across your account.
If your Recipes begin consuming more tasks than expected,
you’ll receive automated email alerts. These thresholds
are built into the platform — so even if you’re not actively
checking the dashboard, you’ll still be notified when
something needs attention.

How to Sunset a Recipe
(Without Breaking Anything)
Sometimes, a Recipe outlives its usefulness. But turning it off
too quickly can break downstream systems.

BEFORE YOU DISABLE OR DELETE A RECIPE:

 Confirm no other system depends on its output

 Notify any downstream owners (IT, marketing, security)

 Archive any logs or data that may be needed for audits

 Comment in the version history with the reason for sunset

13

Final Review Checklist
Final Recipe Design Confirmation
Use this table to confirm your flow is clear, your logic is sound,
and your setup is efficient.

AREA NOTES

Job to Be Done
Do I have a clear statement of what should
happen and why? (e.g., “When X occurs,
do Y in system Z so that outcome A happens”)

Trigger Clarity
Have I chosen the right trigger type and timing?
(Polling, webhook, scheduled)

Steps and Logic
Do I know what each step does and when it runs?
Are filters, loops, and conditions defined?

Task Estimate
Do I know the rough task cost per run and per
month? Have I checked for bulk/loop efficiency?

Edge Cases
Have I identified what could fail, and what
should happen when it does?

Alerts or Logging
Do I know where alerts will go, and what will
be logged (if anything)?

Dependencies
Are any systems, fields, or teams needed for this
to work correctly? Have those been handled?

Version Notes
Have I written down anything a teammate
should know when reviewing the Recipe?

About TrustArc
As the leader in data privacy, TrustArc automates and simplifies the creation of end-to-end privacy
management programs for global organizations. TrustArc is the only company to deliver the depth of
privacy intelligence, coupled with the complete platform automation, that is essential for the growing
number of privacy regulations in an ever-changing digital world. Headquartered in San Francisco, and
backed by a global team across the Americas, Europe, and Asia, TrustArc helps customers worldwide
demonstrate compliance, minimize risk, and build trust. For additional information visit TrustArc.com.

https://trustarc.com/
https://trustarc.com/
https://www.facebook.com/TrustArc/
https://www.linkedin.com/company/trustarc/
https://x.com/TrustArc

	Text Field 1:
	Text Field 2:
	Text Field 3:
	Text Field 17:
	Text Field 50:
	Text Field 54:
	Text Field 58:
	Text Field 62:
	Text Field 66:
	Text Field 51:
	Text Field 55:
	Text Field 59:
	Text Field 63:
	Text Field 67:
	Text Field 52:
	Text Field 56:
	Text Field 60:
	Text Field 64:
	Text Field 68:
	Text Field 53:
	Text Field 57:
	Text Field 61:
	Text Field 65:
	Text Field 69:
	Text Field 35:
	Text Field 38:
	Text Field 41:
	Text Field 44:
	Text Field 47:
	Text Field 23:
	Text Field 36:
	Text Field 39:
	Text Field 42:
	Text Field 45:
	Text Field 48:
	Text Field 29:
	Text Field 37:
	Text Field 40:
	Text Field 43:
	Text Field 46:
	Text Field 49:
	Check Box 1: Off
	Check Box 2: Off
	Check Box 3: Off
	Check Box 4: Off
	Text Field 122:
	Text Field 123:
	Text Field 91:
	Text Field 94:
	Text Field 97:
	Text Field 100:
	Text Field 103:
	Text Field 106:
	Text Field 109:
	Text Field 1012:
	Text Field 92:
	Text Field 95:
	Text Field 98:
	Text Field 101:
	Text Field 104:
	Text Field 107:
	Text Field 1010:
	Text Field 1013:
	Text Field 93:
	Text Field 96:
	Text Field 99:
	Text Field 102:
	Text Field 105:
	Text Field 108:
	Text Field 1011:
	Text Field 1014:
	Check Box 5: Off
	Check Box 6: Off
	Check Box 7: Off
	Text Field 110:
	Text Field 111:
	Check Box 11: Off
	Check Box 12: Off
	Check Box 13: Off
	Check Box 14: Off
	Check Box 15: Off
	Check Box 16: Off
	Check Box 17: Off
	Check Box 18: Off
	Check Box 19: Off
	Check Box 20: Off
	Text Field 112:
	Text Field 113:
	Check Box 21: Off
	Check Box 22: Off
	Check Box 23: Off
	Check Box 24: Off
	Text Field 114:
	Text Field 115:
	Text Field 116:
	Text Field 117:
	Text Field 118:
	Text Field 119:
	Text Field 120:
	Text Field 121:

